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An Algorithm for Extracting Fuzzy Rules
Based on RBF Neural Network

Wen Li and Yoichi Hori, Fellow, IEEE

Abstract—A four-layer fuzzy–neural network structure and
some algorithms for extracting fuzzy rules from numeric data by
applying the functional equivalence between radial basis function
(RBF) networks and a simplified class of fuzzy inference systems
are proposed. The RBF neural network not only expresses the
architecture of fuzzy systems clearly but also maintains the ex-
planative characteristic of linguistic meaning. The fuzzy partition
algorithm of input space, inference algorithm, and parameter tun-
ing algorithm are also discussed. Simulation examples are given to
illustrate the validity of the proposed algorithms.

Index Terms—Explanative characteristic, fuzzy rules, radial
basis function (RBF) neural network.

I. INTRODUCTION

E SSENTIALLY, system modeling is the task of building
models from a combination of a priori knowledge and

empirical data. When a complex system is to be modeled,
usually, the only available information is a collection of em-
pirical data, which are inherently imprecise and incomplete as
obtained from the observation of the system behavior or the
measurement of some system states. There are some types of
modeling with imprecise and incomplete data, such as fuzzy
modeling and rough modeling. Fuzzy modeling based on nu-
merical data, which was first explored systematically by Takagi
and Sugeno [7], has found numerous successful applications to
complex system modeling.

Considerable works on hybrids between fuzzy inference and
neural networks have been done to integrate the excellent
learning capability of neural networks with fuzzy inference
systems, resulting in neuro-fuzzy modeling approaches that
combine the benefits of these two powerful paradigms into a
single capsule and provide a powerful framework to extract
good-quality fuzzy rules from numerical data [2], [8], [9].

The error backpropagation neural network (BP) is used
widely because its learning scheme is visible and easy to
understand. However, the classification capability is lower for
those patterns away from the sample set or for new patterns.
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Hence, radial basis function networks (RBFNs) are recently
adopted widely for fuzzy rules drawing and fuzzy inference
system modeling because they possess simple structure, good
local approximating performance, particular resolvability, and
function equivalence with a simplified class of fuzzy inference
systems [1]. Because of function equivalence, which made it
possible to combine the features of these two systems, a pow-
erful type of neuro-fuzzy systems was developed [2]. However,
a fuzzy system that has been trained using learning algorithms
may lose its interpretability or transparency, which is one of the
most important features of fuzzy systems.

In this paper, a structure of RBFN, which can represent the
interpretability of fuzzy systems efficiently, is proposed based
on the analysis of RBFNs. Then, the learning algorithms of
extracting fuzzy rules from this RBFN are discussed in detail.

II. RBFN CONSTRUCTION AND

CLASSIFICATION MECHANISM

RBFN belongs to a kind of forward networks that are struc-
tured based on the theory of functional approximation. Network
learning is equivalent to searching the best surface matched
with training data in multidimensional space. The activation
function in each node of the hidden layers of the network
forms a basis function of the matched surface from which the
name of the network originates. It is known that a BP network
is a typical global approximation network, whose network
output is decided by all the neurons of the network. Compared
with the BP network, RBFN is a type of local approximation
network, i.e., the network output is decided by a few neurons
existing in a certain local area in input space. Although the
size of the RBFN is bigger than that of the BP network, its
performance characteristics such as learning speed, ability for
approximation, pattern recognition, and classification are better
than the same characteristics of the BP network.

A. General RBFN Structure

A three-layer RBFN with N inputs, L nodes (neurons)
in the hidden layer, and M neurons in the output layer is
shown in Fig. 1. Although RBFNs belong to forward network
models because of their structure, the method of initializing
parameters is different from the BP model, in which parameters
are initialized randomly. The parameters of RBFN such as the
center and width of receptive fields are determined according
to the distribution of sample data [3]. Radial basis functions
(RBFs) are adopted as active functions of the hidden layer
nodes, and there are three RBFs commonly used [4]. In this
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Fig. 1. RBF network structure.

paper, Gaussian function is chosen as the active functions of
the hidden layer nodes

ϕl(X) = exp
[
−‖X − Cl‖2

σ2
l

]
, l = 1, . . . , L (1)

where X is an N -dimensional input vector, Cl is a vector
(i.e., the center of the Gaussian function) with the same di-
mension as X , L is the number of nodes in the hidden layer,
and σl, which is a scalar quantity, is the width of the Gaussian
function. If the transfer functions of the output layer nodes are
linear functions, then the output of each output node is

yj(X) =
L∑

l=1

wljϕl(X), j = 1, . . . ,M. (2)

The normalized output is

yj(X) =

L∑
l=1

wljϕl(X)

L∑
l=1

ϕl(X)
(3)

where wlj denotes the weight between the jth output and the
lth node in the hidden layer. The performance index function E
is expressed as

E =
1
2
(yt − y)2 (4)

where y is the output of the network and yt is the target value.
The structural form of RBFNs, as shown in Fig. 1, is a whole

linkage network. The next section will discuss other network
forms.

B. RBFNs for Representing Interpretability of
Fuzzy Systems

It has been proved that RBFN is functional equivalent with
a simplified class of fuzzy inference systems [1]. However,
the only difference between the two systems is interpretability,

Fig. 2. Two kinds of network structures.

which makes fuzzy systems easy to understand [5]. Represent-
ing a fuzzy system with a general RBFN weakens the outstand-
ing interpretability of fuzzy systems. Therefore, most RBFNs
used to extract fuzzy rules or to implement fuzzy inference are
the transformed ones of the whole linkage form in practice.
Those transformed RBFNs can improve the interpretability of
networks used to express fuzzy systems. In this section, two
transformed RBFNs are given in Fig. 2 [5], [10].

The two networks have the same number of input variables.
For the structure in Fig. 2(a), the number of nodes in hidden
layer 1 is equal to the sum of the fuzzy partitions of each input
variable, and the node linked with an input variable denotes
a fuzzy subset of the input variable, which describes clearly
the fuzzy partition of input space. Hidden layer 2 is used to
implement the algorithm of fuzzy inference, and the number of
nodes is the number of fuzzy rules, i.e., each node is associated
with a fuzzy rule. The overall outputs are acquired from the
output layer. In addition, for the structure in Fig. 2(b), the
number of nodes in hidden layer 1 is equal to the product of
premise-number and rule-number; the n nodes connected to
a node in hidden layer 2 form the premise part of a fuzzy
rule. Therefore, the components of fuzzy rules can be described
clearly with the two hidden layers. Simultaneously, hidden
layer 2 is also the fuzzy inference layer. In addition, the output
layer has the same function as that of the structure in Fig. 2(a).

From the preceding comparison and analysis, it can be ob-
served that the structure in Fig. 2(a) is not only simple but also
capable of describing clearly the fuzzy partitions of input space.
However, the more input variables, the more difficult to express
fuzzy systems and the worse the interpretability. With regard
to expressing fuzzy partitions in input space, although structure
Fig. 2(b) is not clearer than the structure in Fig. 2(a), it has
better representational power on the interpretability of fuzzy
systems than the structure in Fig. 2(a), which makes the de-
scribed fuzzy systems more comprehensible than conventional
neural systems.

C. New Network Structure

According to the analysis and comparison of structures and
natures of the two networks in Fig. 2, it can be observed that the



LI AND HORI: ALGORITHM FOR EXTRACTING FUZZY RULES BASED ON RBF NEURAL NETWORK 1271

Fig. 3. New RBF neural network.

hidden layer 1 of the structure in Fig. 2(b) is only an extension
of the hidden layer 1 of the structure in Fig. 2(a). Based on
this idea, a new structure of RBFN is proposed for the purpose
of improving the interpretability of fuzzy systems. Fig. 3 gives
the new network structure, which integrates the natures of the
two networks shown in Fig. 2. The new structure cannot only
represent the fuzzy partitions of input space clearly but can
also give the formal description of fuzzy systems intuitively.
Compared with the structure in Fig. 2(a), for the new structure,
the representational power of the interpretability is improved
greatly, and the ability to clearly express fuzzy partitions is
maintained. Because the weights between hidden layer 1 and
hidden layer 2 are 1, the performance of the running network is
not changed in nature. Although the structure increases memory
units outwardly, the parameter set of hidden layer 2 is, in fact,
equal to that of hidden layer 1. Therefore, a quick running speed
of the network and the small memory units may be obtained by
applying a suitable learning algorithm and storing method. The
network structure and the method of selecting initial parameters
have been discussed in the literature [6].

III. LEARNING ALGORITHM DESIGN

Let X = (x1, x2, . . . , xN ) denote the N -dimensional input
space, where xi i = 1, 2, . . . , N is an input variable; and
Y = (y1, y2, . . . , yM ) denote the M -dimensional output space,
where yj j = 1, 2, . . . ,M is an output variable. According to
the network structure, the learning algorithm is composed of
a fuzzy partition algorithm of input space, a fuzzy inference

Fig. 4. Definition of overlap degree.

algorithm, and an inference output algorithm, which are given
in following subsections.

A. Fuzzy Partition Algorithm of Input Space

The input layer and hidden layer 1 of the network form the
fuzzy partition part, and the corresponding algorithm is used
to implement the fuzzy partition of input space. Each input
node xi is connected to the corresponding si nodes in hidden
layer 1, and si denotes the number of fuzzy partition for vari-
able xi. In this paper, s = (s1, s2, . . . , sN ) denotes the number
of all the fuzzy partitions , notation ciki

ki = 1, 2, . . . , si de-
notes the weights from the ith input node to the kith node in
hidden layer 1, and ki denotes the kith fuzzy partition of the ith
input variable. The fuzzy partition labels of N input variables
are denoted by notation k = (k1, k2, . . . , kN ), where each ki

corresponds to si ∈ (s1, s2, . . . , sN ).
The Gaussian function (a kind of RBF) is adopted as the

transfer functions of the nodes in hidden layer 1; hence, the
output of the nodes can be written as

fi,ki (xi) e
−(xi−ciki

)2/σ2
iki (5)

where ciki
and σiki

are the center and width of the Gaussian
function, respectively. The initial value of ciki

is determined by
the initial clustering center [6].

In order to determine parameter σiki
, a conception of overlap

degree is introduced. The overlap degree is the degree by which
two fuzzy subsets overlap, which is measured by the maximum
membership degree of intersection produced by the two subsets.
As shown in Fig. 4, for example, the overlap degree is 0.5.
In fuzzy control, overlap degree is an important factor that
affects control performance. Generally, overlap degree should
be around 0.5; a value that is too big or too small may result in
an unexpected control effect. Considering this case, a formula
for determining the initial width of the Gaussian function is
deduced.

Let the distance between two adjacent clustering centers be
d = ‖ci − ci−1‖, corresponding to clustering center ci, and the
RBF be fi(xi) e−(xi−ci)

2/σ2
i . In the selection of width σi, the

overlap degree of adjacent fuzzy subsets should remain to be
around 0.5. Therefore, when ‖xi − ci‖(d/2),

0.3679 < fi(xi) < 0.7788 (6)
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Fig. 5. Fuzzy partition when membership functions are symmetric.

i.e., 1/4 < ((xi − ci)2/σ2
i )((d/2)2/σ2

i ) < 1. Thus, for the
RBFN shown in Fig. 3, width σi should be selected by the
following equation:

σi =
‖ci − ci−1‖

γ
, 1 < γ < 2 (7)

where γ is the overlap coefficient.
Usually, a clustering center corresponds to a fuzzy subset

using an RBF as its membership function. Taking Fig. 5 as an
example, there are four clustering centers c1 = −3.5, c2 = 0,
c3 = 1, and c4 = 3; each corresponds to an RBF with σi =
‖ci − ci−1‖/γ, γ = 1.5, which define the fuzzy subsets (fuzzy
partitions) at region [-4, 4]. As shown in Fig. 5, because
the different intervals of adjacent clustering centers result in
different widths σi−1 and σi from (7), (6) cannot always be
satisfied. In order to keep the overlap degree of the adjacent
fuzzy subsets to about 0.5, the membership functions should be
reconstructed as

fi(xi)

{
e−(xi−ci)

2/σ2
il , xi ≤ ci

e−(xi−ci)
2/σ2

ir , xi > ci

(8)

where

σil =
‖ci − ci−1‖

γ
(9)

σir =
‖ci+1 − ci‖

γ
. (10)

Equation (8) gives the mathematical description of nonsym-
metry membership function. As long as membership functions
are defined by (8) and the selection of widths σil and σir are
defined by (9) and (10), it can be ensured that the overlap
degree of two adjacent fuzzy subsets satisfies (6), no matter how
different the two neighbored intervals of adjacent clustering
centers are. Fig. 6 shows a fuzzy partition case that has the same
conditions as that in Fig. 5, except that the membership func-
tions are described by (8). With (8) reconstructing RBF, (5) is
rewritten as

fi,ki (xi) =

{
e
−(xi−ciki

)2/σ2
il,ki , xi ≤ ciki

e
−(xi−ciki

)2/σ2
ir,ki , xi > ciki

. (11)

Fig. 6. Fuzzy partition when membership functions are nonsymmetric.

The input layer and hidden layer 1 describe clearly the fuzzy
partition status of each dimension in input space for a control
system, i.e., the definition of the fuzzy subsets (fuzzy linguistic
values) of each input variable. Supposing the crisp input is
x0(x0

1, x
0
2, . . . , x

0
N ), the membership degree of each variable

that belonged to various fuzzy subsets can be calculated using
(11). Hence, the fuzzification process of the input variables is
completed.

B. Forward Inference Algorithm

The inference task of fuzzy systems is implemented by
hidden layer 2 and hidden layer 3. The L node groups de-
note L rules. In each group, there are N input nodes P l

iki
,

i = 1, 2, . . . , N ki ∈ (1, 2, · · · , si), which correspond to the N
premises of the lth rule. Notation P l

iki
denotes that the ith

premise of the lth rule takes the kith linguistic value Al
iki

. When
there is a crisp input x0(x0

1, x
0
2, . . . , x

0
N ), P l

iki
should be the

membership degree of x0
i that belongs to Al

iki
. In other words,

for l outputs in hidden layer 2 P l
iki

, l = 1, · · · , L, the following
equation exists:

P l
iki

= fi,ki

(
x0

i

)
= e

− (x0
i
−ci,ki)

2

σ2
i,ki , l = 1, . . . , L. (12)

The transfer function of each node Rl in hidden layer 3
(inference layer) is determined according to the operating
method of the fuzzy implication relation selected. In this paper,
the product operation is selected as the transfer function of node
Rl; thus, the output of node Rl can be given by

Rl

N∏
i=1

P l
iki

. (13)

The M outputs of system yj , j = 1, . . . ,M , are composed
of the M consequents of a fuzzy rule. Using weight vlj between
the inference layer and the output layer to denote the jth
consequent of the lth rule, the initial vlj is determined by
the initial cluster center of sample data [6]. The output of the
network may be represented with a general form given by

yj = f(vlj , Rl), j = 1, . . . ,M. (14)
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Summarizing the preceding discussion, if input x0, singleton
fuzzification, product inference mechanism, and center-average
defuzzification are used, then the output of the network is

y0
j =

L∑
l=1

vljRl

L∑
l=1

Rl

=

L∑
l=1

vlj

N∏
i=1

P l
iki

(x0)

L∑
l=1

N∏
i=1

P l
iki

(x0)
. (15)

IV. NETWORK MODIFYING ALGORITHM AND STEPS

A. Modifying Algorithm of Network Parameters

Obtaining network output y0
j from (15), the overall error of

the network output can be calculated by performance index
function (16)

E =
1
2

M∑
j=1

(
yt

j
− y0

j

)2

. (16)

The network parameters are modified via a gradient descent
technique. The modifying algorithms of weights in each layer
are derived as follows.

The expression of modifying weights between hidden layer
3 and the output layer is

∆vlj = −η
∂E

∂vlj
− η

∂E

∂yj

∂yj

∂vlj
(17)

where 0 < η < 1 is the learning rate, and the partial derivative
of E with respect to yj , for a specific j (jth output), is

∂E

∂yj
= yt

j − yj . (18)

Let

δj = − ∂E

∂yj
. (19)

Because yj = (
∑L

l=1 Rlvlj)/(
∑L

l=1 Rl), the following equa-
tion exists for a specific l:

∂yj

∂vlj
=

Rl

L∑
t=1

Rt

. (20)

From (18)–(20), (17) becomes

∆vlj = ηδj
Rl

L∑
t=1

Rt

. (21)

The outputs of the nodes in hidden layer 3 are computed by
(13). All weights between hidden layer 2 and hidden layer 3
are 1 without modifying. Those nodes in hidden layer 2 are
computed by (12).

The modifying formula of weights between the input layer
and hidden layer 1 is derived as

∆ci,ki
= − η

∂E

∂ci,ki

= − η
∂E

∂yj

∂yj

∂Rl

∂Rl

∂P l
i,ki

∂P l
i,ki

∂ci,ki

. (22)

Each output yj relates with all Rl. Hence,

∂yj

∂Rl
=

M∑
j=1

∂

∂Rl




L∑
l=1

vljRl

L∑
l=1

Rl




=
M∑

j=1

(
L∑

l=1

vljRl

)′

Rl

(
L∑

l=1

Rl

)
−
(

L∑
l=1

vljRl

)(
L∑

l=1

Rl

)′

Rl(
L∑

l=1

Rl

)2 .

For a specific l,

∂yj

∂Rl
=

M∑
j=1

vlj − yj

L∑
ll=1

Rll

(23)

∂Rl

∂P l
i,ki

=
∂

∂P l
i,ki

(
N∏

i=1

P l
i,ki

)
. (24)

For a specific i, (24) is changed to

∂Rl

∂P l
i,ki

=
N∏

ii=1
ii�=i

P l
ii,ki

(25)

and for ∂P l
i,ki

/∂ci,ki
with specific i and ki, there exists

∂P l
i,ki

∂ci,ki

=
∂

∂ci,ki


e

− (x0
i
−ci,ki)

2

σ2
i,ki




=
2
(
x0

i − ci,ki

)
σ2

i,ki

P l
i,ki

. (26)
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Considering (19), (23), (25), and (26), (22) is
changed to

∆ci,ki
= ηδj

M∑
j=1

vlj − yj

L∑
ll=1

Rll

2
(
x0

i − ci,ki

)
σ2

i,ki

N∏
ii=1
ii�=i

P l
ii,ki

P l
i,ki

= ηδl
2(x0

i − ci,ki
)

σ2
i,ki

N∏
ii=1

P l
ii,ki

= ηδl

2
(
x0

i − ci,ki

)
σ2

i,ki

Rl (27)

where

δl =
M∑

j=1

δj
vlj − yj

L∑
ll=1

Rll

. (28)

Similarly, the following equation can be derived:

∆σi,ki
= − η

∂E

∂σi,ki

= − η
M∑

j=1

∂E

∂yj

∂yj

∂Rl

∂Rl

∂P l
i,ki

∂P l
i,ki

∂σi,ki

= ηδl

2
(
x0

i − ci,ki

)2
σ3

i,ki

Rl. (29)

B. Modifying Steps of Network Parameters

According to Section III-A, the modifying steps of network
parameters can be summarized in the following.

For ∆vlj , the modifying steps are given as follows:

Step 1) computing δj by (18) and (19);
Step 2) computing ∂yj/∂vlj by (20);
Step 3) computing ∆vlj by (21);
Step 4) updating vlj by (30)

vlj(t + 1) = vlj(t) + ∆vlj(t). (30)

For ∆ci,ki
, the modifying steps are given as follows:

Step 1) computing δl by (28);
Step 2) computing ∆ci,ki

by (27);
Step 3) updating ci,ki

by (31)

ciki
(t + 1) = ciki

(t) + ∆ciki
(t). (31)

For ∆σi,ki
, the modifying steps can be obtained from (29),

and to update σi,ki
by (32),

σiki
(t + 1) = σiki

(t) + ∆σiki
(t). (32)

It should be noticed that σi,ki
should satisfy (7).

Fig. 7. Simulation curve using group 1 data.

Fig. 8. Simulation curve using group 2 data.

Fig. 9. Simulation curve using group 3 data.

Fig. 10. Simulation curve using group 4 data.
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TABLE I
SIMULATION RESULT FOR GROUP 1

TABLE II
SIMULATION RESULT FOR GROUP 2

TABLE III
SIMULATION RESULT FOR GROUP 3

TABLE IV
SIMULATION RESULT FOR GROUP 4

V. EXAMPLE AND CONCLUSION

In order to validate the validity of the algorithm, a simulation
is made with the function

y =
√

64 − 81((x1 − 0.6)2 + (x2 − 0.5)2)/9 − 0.5.

Having training by 1000 samples, four groups of curves
about the network output are shown in Figs. 7–10, and the
corresponding data are given in Tables I–IV, in which x1,
x2, yt, and y0 denote input 1, input 2, target output, and
network output, respectively. Each group has 100 test points.
The average relative error is less then 5%.

As shown in the figures and tables, the algorithm for extract-
ing fuzzy rules based on RBFN is effective.
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